Mysağlık
Hoşgeldiniz

Join the forum, it's quick and easy

Mysağlık
Hoşgeldiniz
Mysağlık
Would you like to react to this message? Create an account in a few clicks or log in to continue.

Denklem Çözme - Konu Anlatımı

Aşağa gitmek

Denklem Çözme - Konu Anlatımı Empty Denklem Çözme - Konu Anlatımı

Mesaj tarafından Dr.House C.tesi Ekim 09, 2010 12:52 am

1) a ¹ 0 olmak üzere,
ax + b = 0 ise,
2) (a = 0 ve b = 0) ise, ax + b = 0 denklemini bütün sayılar sağlar. Buna göre, reel (gerçel) sayılarda çözüm kümesi dir.
3) (a = 0 ve b ¹ 0) ise, ax + b = 0 denklemini sağlayan hiçbir sayı yoktur. Yani, Ç = Æ dir.

D. BİRİNCİ DERECEDEN İKİ BİLİNMEYENLİ DENKLEM SİSTEMİ
a, b, c Î , a ¹ 0 ve b ¹ 0 olmak üzere,
ax + by + c = 0 denklemine birinci dereceden iki bilinmeyenli denklem denir.
Bu denklem düzlemde bir doğru belirtir. Doğru üzerindeki bütün noktaların oluşturduğu ikililer denklemin çözüm kümesidir.
Buna göre, ax + by + c = 0 denkleminin çözüm kümesi birçok ikiliden oluşur.


a, b, c Î olmak üzere,
ax + by + c = 0

denklemi her (x, y) Î için sağlanıyorsa
a = b = c = 0 dır.



Birden fazla iki bilinmeyenli denklemden oluşan sisteme birinci dereceden iki bilinmeyenli denklem sistemi denir.

Çözüm Kümesinin Bulunması
Birinci dereceden iki bilinmeyenli denklem sistemlerinin çözüm kümesi; yok etme yöntemi, yerine koyma yöntemi, karşılaştırma yöntemi, grafik yöntemi, determinant yöntemi gibi yöntemlerden biri ile yapılır.
Biz burada üçünü vereceğiz.

a. Yok Etme Yöntemi: Değişkenlerden biri yok edilecek biçimde verilen denklem sistemi düzenlenir ve taraf tarafa toplanır.
Taraf tarafa toplandığında veya çıkarıldığında (ya da bir düzenlemeden sonra) değişkenlerden biri sadeleşiyorsa “Yok etme yöntemi” kolaylık sağlar.

b. Yerine Koyma Yöntemi: Verilen denklemlerin birinden, değişkenlerden biri çekilip diğer denklemde yerine yazılarak sonuca gidilir.
Denklemlerin birinden, değişkenlerden biri kolayca çekilebiliyorsa, “Yerine koyma yöntemi” kolaylık sağlar.

c. Karşılaştırma Yöntemi: Verilen denklemlerin ikisinden de aynı değişken çekilir. Denklemlerin diğer tarafları karşılaştırılır (eşitlenir).
Her iki denklemden de aynı değişken kolayca çekilebiliyorsa, “Karşılaştırma yöntemi” kolaylık sağlar.

Ü ax + by + c = 0
dx + ey + f = 0

denklem sistemini göz önüne alalım:
Bu iki denklemin her birinin düzlemde bir doğru belirttiği göz önüne alınırsa üç durum olduğu görülür.

Birinci durum:
ise, bu iki doğru tek bir noktada kesişir.
Verilen denklem sisteminin çözüm kümesi bir tek noktadan oluşur.

İkinci durum:
ise, bu iki doğru çakışıktır.
Doğru üzerindeki her nokta denklem sistemini sağlar.
Verilen denklem sisteminin çözüm kümesi sonsuz noktadan oluşur.

Üçüncü durum:
ise, bu iki doğru paraleldir.
Denklem sistemini sağlayan hiçbir nokta bulunamaz.
Verilen denklem sisteminin çözüm kümesi boş kümedir.
Dr.House
Dr.House
Admin
Admin

Koç Mesaj Sayısı : 816
Reputation : 2468
Kayıt tarihi : 17/09/10
Yaş : 35
Nerden : İzmir

https://mysaglik.yetkinforum.com

Sayfa başına dön Aşağa gitmek

Sayfa başına dön

- Similar topics

 
Bu forumun müsaadesi var:
Bu forumdaki mesajlara cevap veremezsiniz